Methane in shallow subsurface sediments at the landward limit of the gas hydrate stability zone offshore western Svalbard

نویسندگان

  • Carolyn A. Graves
  • Rachael H. James
  • Célia Julia Sapart
  • Andrew W. Stott
  • Ian C. Wright
  • Christian Berndt
  • Graham K. Westbrook
  • Douglas P. Connelly
چکیده

Offshore western Svalbard plumes of gas bubbles rise from the seafloor at the landward limit of the gas hydrate stability zone (LLGHSZ; 400 m water depth). It is hypothesized that this methane may, in part, come from dissociation of gas hydrate in the underlying sediments in response to recent warming of ocean bottom waters. To evaluate the potential role of gas hydrate in the supply of methane to the shallow subsurface sediments, and the role of anaerobic oxidation in regulating methane fluxes across the sediment–seawater interface, we have characterised the chemical and isotopic compositions of the gases and sediment pore waters. The molecular and isotopic signatures of gas in the bubble plumes (C1/C2+ = 1 10; dCCH4 = 55 to 51‰; dD-CH4 = 187 to 184‰) are similar to gas hydrate recovered from within sediments 30 km away from the LLGHSZ. Modelling of pore water sulphate profiles indicates that subsurface methane fluxes are largely at steady state in the vicinity of the LLGHSZ, providing no evidence for any recent change in methane supply due to gas hydrate dissociation. However, at greater water depths, within the GHSZ, there is some evidence that the supply of methane to the shallow sediments has recently increased, which is consistent with downslope retreat of the GHSZ due to bottom water warming although other explanations are possible. We estimate that the upward diffusive methane flux into shallow subsurface sediments close to the LLGHSZ is 30,550 mmol m 2 yr , but it is <20 mmol m 2 yr 1 in sediments further away from the seafloor bubble plumes. While anaerobic oxidation within the sediments prevents significant transport of dissolved methane into ocean bottom waters this amounts to less than 10% of the total methane flux (dissolved + gas) into the shallow subsurface sediments, most of which escapes AOM as it is transported in the gas phase. 2016 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paleo-methane emissions recorded in foraminifera near the landward limit of the gas hydrate stability zone offshore western Svalbard

We present stable isotope and geochemical data from four sediment cores from west of Prins Karls Forland (ca. 340 m water depth), offshore western Svalbard, recovered from close to sites of active methane seepage, as well as from shallower water depths where methane seepage is not presently observed. Our analyses provide insight into the record of methane seepage in an area where ongoing ocean ...

متن کامل

Fluxes and fate of dissolved methane released at the seafloor at the landward limit of the gas hydrate stability zone offshore western Svalbard

Widespread seepage of methane from seafloor sediments offshore Svalbard close to the landward limit of the gas hydrate stability zone (GHSZ) may, in part, be driven by hydrate destabilization due to bottom water warming. To assess whether this methane reaches the atmosphere where it may contribute to further warming, we have undertaken comprehensive surveys of methane in seawater and air on the...

متن کامل

Large-scale Simulation of Oceanic Gas Hydrate Dissociation in Response to Climate Change

Vast quantities of methane are trapped in oceanic hydrate deposits, and there is concern that a rise in the ocean temperature will induce dissociation of these hydrate accumulations, potentially releasing large amounts of carbon into the atmosphere. Because methane is a powerful greenhouse gas, such a release could have dramatic climatic consequences. The recent discovery of active methane gas ...

متن کامل

Widespread methane seepage along the continental margin off Svalbard - from Bjørnøya to Kongsfjorden

Numerous articles have recently reported on gas seepage offshore Svalbard, because the gas emission from these Arctic sediments was thought to result from gas hydrate dissociation, possibly triggered by anthropogenic ocean warming. We report on findings of a much broader seepage area, extending from 74° to 79°, where more than a thousand gas discharge sites were imaged as acoustic flares. The g...

متن کامل

Large-Scale Simulation of Methane Hydrate Dissociation along the West Spitsbergen Margin

Vast quantities of methane are trapped in oceanic hydrate deposits, and there is concern that a rise in the ocean temperature will induce dissociation of these hydrate accumulations, potentially releasing large amounts of methane into the atmosphere. The recent discovery of active methane gas venting along the landward limit of the gas hydrate stability zone (GHSZ) on the shallow continental sl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016